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Decision support for malaria-control programmes
– a system dynamics model
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Although malaria claims millions of casualties every year there are hardly any recent efforts to model its epidemiology in order to
support decision-makers of malaria-control programmes. There have been ample attempts to develop analytical models during the era
of WHO malaria eradication programmes (1950–1970), but none of them was detailed enough to honour the high complexity arising
from the interdependencies of the environment, the parasite, vector and host system. This paper presents a multi-group system dynamics
model of the spread of malaria in an African country. Epidemiological details are included so that the impact of several intervention
programmes can be simulated and analysed. The model’s basic structure is fully described and some examples of the simulations are
presented. It becomes obvious that detailed multi-group system dynamics models are valuable to assess the effectiveness and efficiency
of anti-malaria campaigns.
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1. Introduction

The first mathematical model of epidemiological pro-
cesses was developed by Sir Ronald Ross about 100 years
ago in order to predict the spread of malaria [28,29]. This
parasitosis has always caused more morbidity and mortal-
ity than any other infectious disease. It is estimated that
about 300–500 million infections and 2–4 million deaths are
due to malaria every year [9]. The Organisation of African
Union estimates that the direct and indirect costs of malaria
in Africa alone are more than 3600 million US$ every
year [1]. The high morbidity and mortality as well as the
high complexity of the infection cycle call for mathematical
modelling. Thus, the first simple model of Ross was fol-
lowed by several other analytical models [4–6,12,19,23,26],
mainly using differential equations or Markov chains to
predict the spread of the disease. The majority of these
models was developed in the late fifties or sixties while the
World Health Organisation (WHO) pursued the malaria-
eradication programmes. The mathematical models pre-
dicted that malaria could be eradicated world-wide by fight-
ing the anopheles mosquito. Unfortunately, the ecological
system was so complex that these programmes failed in
tropical countries. WHO had to accept that malaria will
persist or even increase in the tropics. Mathematical mod-
elling of malaria transmission was buried together with the
malaria-eradication programme in the early seventies.

The development of computers has changed the pros-
pects of mathematical modelling and the presentation of
these models [11,14,25,34] completely and makes it neces-
sary to consider again the usefulness of mathematical mod-
elling for decision-makers of malaria-control programmes.
The older models could only reflect a few components of

the ecological and epidemiological system, as more de-
tails would lead to highly complex systems of equations
which could not be solved at that time. Therefore, Bai-
ley [5] concludes his analysis of several epidemiologi-
cal models (Ross–Macdonald, Dietz–Molineaux–Thomas,
Dutertre, Nasell and Bekessy–Moineaux–Storey): “These
applications are not always well founded. Sometimes the
mathematics used does not represent the model intended.
On other occasions a factor will turn out to differ by at
least an order of magnitude from a value assigned to it to
be on the safe side” (p. 188). And later: “Formulae may
be chosen for practical application because they are easy to
use or are simply traditional, and not because they correctly
reflect the assumption of the investigator” (p. 188). Seeing
the computational capabilities of the time when these mod-
els were developed it is no wonder that model-builders had
to pay more attention to computability than epidemiolog-
ical reality and the way in which models are represented
and communicated.

Today system dynamics models [8,13] consist of thou-
sands of interdependent equations and can be easily com-
puted with a PC. Bailey sees the future of epidemiological
modelling in these simulations: “One extremely promis-
ing tool in the OR armamentarium is the approach implied
by the term ‘system dynamics’ ” (p. 193). And therefore,
malaria models based on system dynamics “could be of
prime practical importance for the control of malaria,. . .”
(p. 193).

However, the failure of the older models to predict
the spread of malaria makes malariologists very suspicious
against any kind of mathematical modelling. Whereas there
are quite a number of excellent models to forecast the AIDS
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epidemic [17,27] and OR-magazines dedicate special issues
to this topic [18], there are only few recent attempts to
model the spread of malaria [3], although malaria claims
many more victims than AIDS! The following model was
developed in order to support decision-makers of malaria-
control programmes. In addition, it is our target to demon-
strate the usefulness of system dynamics models for malari-
ologists and other epidemiologists. We are aware of the fact
that this model can only be a first step, the concrete appli-
cation in a particular situation must follow. Therefore, we
would like to invite malariologists and management science
to improve our mathematical model and suggest practical
applications.

2. Model

The mathematical model – as presented in the appendix –
follows the infection cycle consisting of agent (Plasmodium
falciparum parasite), vector (Anopheles gambiae mosquito)
and host (human being). In addition the ecological system
of the anopheles is simulated. The interdependent equations
of the ecological, infectious and human system cannot be
analysed independently as there are several feed-back loops,
e.g., the number of infectious human beings determines the
number of infections of anopheles which itself determines
the number of infections of humans (figure 1). These loops
are dynamic and it were systems of that kind which caused
Forrester to develop this particular branch of Operations
Research called “system dynamics” [8,13] which was used

for this malaria model. It is solved as a discrete simula-
tion with time intervals of one day (∆t = 1). Parameters
were either taken from malaria literature [1,2,7,9,28] or de-
rived by a two-stage Delphi procedure involving several
German malariologists. The process of calibration could
build on experiences with a system dynamics model of the
AIDS-epidemic in Tanzania undergone by the author pre-
viously [17]. Meanwhile he used to live for several years
in Tanzania, and therefore the model is mainly suited for
this country; however, its findings can easily be applied to
other African countries.

As the spread of malaria depends on the habitat of the
anopheles vector, the model has to simulate the ecologi-
cal system. The model-population lives in two separate
regions. Region 1 (300 m altitude) is characterised by con-
stantly high malaria (holoendemic), region 2 (1500 m alti-
tude) by periodically fluctuating malaria (epidemic). Tem-
perature and precipitation depend on the altitude and rain
seasons. It is assumed that in both regions 15th of Jan-
uary has the highest, 15th of August the lowest tempera-
ture. It is assumed that the average temperature declines by
0.5 ◦C [24] with an increase of altitude by 100 m, i.e., the
temperature in region 2 is 6 ◦C lower than in region 1. Pre-
cipitation differs from this pattern because the inner tropics
have a major and a minor rain season. The model assumes
the peak of the long rains on 15th of April and the peak of
the short rains on 15th of October. Region 2 receives 1.5
times more rain than region 1, as usually higher altitudes
receive more precipitation.

Figure 1.
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Precipitation determines the size of the pools which can
be used as habitat of anopheles larvae. The model assumes
that the pool consists of the precipitation of the last 10 days,
i.e., the suitable breeding-ground for anopheles is fluctuat-
ing with rain seasons.

The model analyses the ecology of Anopheles g., the
most prominent malaria vector in Africa. In order to be able
to lay eggs anopheles have to have a bloodmeal which is –
on average – sufficient for 300 eggs. Afterwards they need
new blood. The larvae mature in the water, but this period
depends on the temperature. The model allows for natural
mortality of larvae and anopheles as well as mortality due
to larvicides, insecticides (in-door and out-door spraying)
and drainage of pools.

An anopheles is infected if it bites an infectious human
being. The number of newly infected anopheles depends
on the number of non-infected mosquitoes, the number of
infectious human beings and the application of bed-nets
preventing mosquitoes from biting humans. Multiple in-
fections with booster-effects are not considered. After the
infection the plasmodium matures in the anopheles. This
period depends on the temperature, i.e., the warmer it is,
the faster the plasmodium matures.

The model simulates the demographic system of the two
populations (fertility, natural ageing, mortality and mobil-
ity between region 1 and 2). A non-infected human being
is infected if he is bitten by an infectious anopheles; how-
ever, only a small percentage (medical infectiosity) of them
will indeed be infected. An infected human being develops
malaria after – on average – 12 days. At that stage he will
become infectious. It is assumed that this period does not
depend on air temperature. A certain percentage of those
developing malaria die, others recover and build up semi-
immunity which reduces medical infectiosity and mortality
risk. This semi-immunity is lost if no re-infections occur
at least every six months.

3. Simulations

The high number of compartments and interdependen-
cies makes the solution of differential equations impossible.
Therefore, the interdependent model was formulated and
programmed with Turbo Pascal 6.0 as a system dynamics
simulation on a Pentium 166. The validity of variables is
a major problem of all system dynamics models. For the
simulations of the malaria model several variables had to be
calibrated. However, as real data of malaria in developing
countries is more available [1,2,7,9,28] than for some other
diseases this process was successful. All conclusions drawn
from the model are based on “most likely” parameters and
are supported by sensitivity analysis.

The model is used to answer the following questions:

– Can there be an equilibrium between man and malaria?

– What is the impact of rain seasons on the disease diffu-
sion?

– What are the costs and benefits of in-door-spraying pro-
grammes?

– What are the costs and benefits of out-door-spraying
programmes?

– Is it possible to eradicate the anopheles by the use of
larvicides and drainage of pools?

– What is the long-term impact of impregnated bed-nets?

– How high must the efficacy of a vaccine be in order to
eradicate malaria?

– What is the impact of global warming on malaria?

– What is the impact of migration on malaria?

The simulations give useful answers to these questions.
This is demonstrated for a particularly difficult issue: the
use of impregnated bed-nets. Obviously, the use of bed-
nets with repellents prevents mosquitoes from biting the
sleeping human being because anopheles bite only after
sunset. This is in particular important for young children
who can be kept under the net during the whole night.
Therefore, several short-term studies proved that bed-nets
are an effective means of preventing malaria [2,7,10,15,16,
20]. On the other hand, if young children are not bitten by
mosquitoes they will never acquire semi-immunity and thus
morbidity and mortality will be just transferred to later years
of life where it is not possible to be under the net for the
whole night [21,31–33]. The result might be a disastrous
malaria epidemic in 10 to 15 years.

Most physicians and epidemiologists argue that one must
indeed wait for 10–15 years until this question can be an-
swered. Seeing that meanwhile millions might die, the
mathematical model can give an early insight. The model
assumes that all children of age a = 1 are perfectly pro-
tected against bites (variable Vr,1 = 0). Figures 2 and 3
show the number of infections and deaths under this con-
dition. The curve titled “Standard” represents the devel-
opment of malaria cases if no bed-net programmes are
launched. The “25 years” curve shows the development
if a bed-net programme is working for 25 years, the “5-
years” curve if the programme is withdrawn after the fifth
year.

The consequent use of bed-nets by infants does definitely
have a positive effect on malaria incidence and mortality.
This decline is due to different causes: First of all, no
more infants are infected. This will lead to a lower preva-
lence of plasmodia in anopheles mosquitoes which will re-
sult in a lower risk of being infected for older children and
adults. Therefore, the prevalence of malaria will decrease.
However, the impact is greatest in the first few years of
the programme. Older children and adults will lose their
semi-immunity and thus become vulnerable for infections.
Although the risk of one mosquito-bite being infectious is
less, the decreased semi-immunity will result in a higher
risk of infection and mortality. Therefore, short-term stud-
ies give a completely wrong picture of the real effectiveness
of bed-nets. After a period of 2–3 years the number of in-
fections and deaths starts growing again. This increase is
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Figure 2. Infection rates and bed-net programmes, region 1.

Figure 3. Infection rates and bed-net programmes, region 2.

greatest in region 2 as the number of infectious bites is so
high in region 1 that even older children and adults can
still acquire semi-immunity. In region 2, however, the loss
of semi-immunity cannot be made good. Thus, after 25
years the number of infections with bed-net programmes is
72.41% of the number without any programme, whereas in
region 1 only 61.91% of the infections occur. In both re-
gions the number of infections and deaths of older children
and adults (a = 2, 3, 4) is higher than without bed-net pro-
grammes. Therefore, the protection of infants has negative
effects on the health of adults.

The analysis shows that bed-net programmes have disas-
trous consequences if they are not sustained. A mosquito-
net can easily tear and the impregnation will be ineffective
if it is not re-done at least twice a year. Therefore, the
number of infections increases dramatically if programmes
are not continued. Infants will be bitten and infected. Chil-
dren could not acquire semi-immunity and are thus highly
vulnerable. In region 1 semi-immunity returns faster than
in region 2, as the number of mosquitoes and consequently
the number of bites is much higher than in region 2. There-
fore, after the bed-net programme has been withdrawn, the
number of infections and deaths in region 2 will be signif-
icantly higher than without any programme. In the third
year after the programme was stopped there are 62.45%
more infections than without any programme. Therefore,

health interventions call for long-term commitment, other-
wise they have contrary effects.

A survey in Tanzania showed that the costs of a suitable
bed-net can be estimated as 12 US$ and the annual costs
of impregnation are 1 US$ (two impregnations per year).
Assuming that a mosquito-net will have to be replaced af-
ter three years, the annual costs per impregnated bed-net
can be estimated at 5 US$. Furthermore, our own sur-
veys in Tanzanian hospitals and dispensaries showed that
the costs per average malaria patient are 3.70 US$ for the
entire treatment. In region 1 the present value of the dif-
ference between the direct and indirect costs of malaria
and the costs of the bed-net programme is positive for any
discounting factor, i.e., bed-net programmes are efficient
investments in health. In region 2 sensible discounting fac-
tors (<30%) lead to negative present values. Therefore, it
is not efficient to finance bed-net programmes in region 2.
It becomes obvious that health policy decisions must take
the geographic situation into account.

The costs per life saved differ between 96.54 US$ (re-
gion 1, 10% discounting rate) and 1,097.84 US$ (region 2,
0% discounting rate). Thus, the results of the simulation
make it possible to compare the investment in malaria con-
trol programmes with other health investments. It seems
that anti-malaria campaigns are highly efficient in compar-
ison to other programmes.
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4. Summary

Mathematical modelling of epidemiological processes is
a powerful tool which has hardly been utilised by physi-
cians and biologists. This is mainly due to the fact that
the traditional bio-mathematical models could only reflect a
very limited aspect of the complex reality and consequently
failed to serve as decision-support for epidemiologists. Sys-
tem dynamics models have the capability to overcome these
difficulties and open the door to a new era of mathematical
modelling in epidemiology. 100 years after Ross developed
the first malaria model it is overdue that the time-, cost-
and risk-saving advantages of these models are utilised in
malariology. The armamentarium of Operations Research
offers the foundation for epidemiological forecasting and
economic analysis of curative and preventive health care

programmes and should be used for other complex ecolog-
ical systems consisting of agent, vector and host. Thus, this
paper calls for an intensified co-operation between Opera-
tions Research and biology/medicine. OR specialist must
focus on developing models with graphical interfaces eas-
ily accessible for practioners. At the same time, public
health planners, administrators and managers of interven-
tion programmes should be trained in management science
so that they are relieved from believing what mathemati-
cians tell them, but they are personally involved in the
development and application of system dynamics models.
Seeing that Schools of Public Health are improving their
syllabi in this sense and that modern computer models are
very user-friendly, there is a great possibility to develop re-
alistic epidemiological models based on system dynamics
for other diseases.

Appendix. Model

Ecological system

The model defines two regions:

r =
{

1 300 m altitude,
2 1500 m altitude.

Temperature and precipitation depend on the altitude and rain seasons.

temperatured,1 =


T min +T max−T min

180 ∗ (d+ 135) for 1 6 d < 45,

T max +T max−T min
180 ∗ (d− 45) for 45 6 d < 225,

T min +T max−T min
180 ∗ (d− 225) for 225 6 d 6 360,

with

T min minimum temperature in region 1 (15 August) [◦C],
T max maximum temperature in region 1 (15 February) [◦C],
d day (360 days per year),
temperatured,1 temperature on day d in region 1 [◦C].

T min and T max are symmetrically distributed around the average, i.e.,

T min = T av∗
(
1− T var

100

)
,

T max = T av∗
(
1 + T var

100

)
with

T av annual average temperature in region 1 [◦C],
T var maximum variation of temperature in region 1 [%].

It is assumed that the average temperature declines by 0.5 ◦C [24] with an increase of altitude by 100 m, i.e.,

temperatured,2 = temperatured,1 − 6.

Precipitation differs from this pattern because the inner tropics have a major and a minor rain season. This is modelled
for region 1 as follows:

precd,1 =



N max 2− N max 2−N min 1
90 ∗ (d+ 75) for 1 6 d < 15,

N min 1 + N max 1−N min 1
90 ∗ (d− 15) for 15 6 d < 105,

N max 1− N max 1−N min 2
90 ∗ (d− 105) for 105 6 d < 195,

N min 2 + N max 2−N min 2
90 ∗ (d− 195) for 195 6 d 6 285,

N max 2− N max 2−N min 1
90 ∗ (d− 285) for 285 6 d < 360
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with

N min 1 minimum precipitation, major dry season (15 January) [mm],
N max 1 maximum precipitation, major rain season (15 April) [mm],
N min 2 minimum precipitation, minor dry season (15 July) [mm],
N max 2 maximum precipitation, minor rain season (15 October) [mm],
d day,
precd,1 precipitation on day d in region 1 [mm]

with

N min 1 = N total
360 ∗

(
1− N var

100

)
,

N max 1 = N total
360 ∗

(
1 + N var

100

)
,

N min 2 = N total
360 ∗

(
1− N var

200

)
,

N max 2 = N total
360 ∗

(
1 + N var

200

)
with

N total annual precipitation in region 1 [mm],
N var maximum variation of precipitation in region 1 [%].

It is assumed that region 2 receives 1.5 times more rain than region 1, as usually higher altitudes receive more precipitation:

precd,2 = 1.5 ∗ precd,1.

Precipitation determines the size of the pools which can be used as habitat of anopheles larvae. The model assumes that
the pool consists of the precipitation of the last 10 days, i.e.,

Pr,d =

[
20m2 + s par ∗

10∑
k=1

precd−k+1

]

with

prect = prec360+t for t 6 0,
Pr,d size of pool [m]2 on day d,
s par parametric constant [m2/mm of rainfall].

The parametric constant is used as a calibration variable in order to stabilise the mosquito population.

Vector system

The model analyses the ecology of Anopheles gambiae. The following variables are defined:

Lr,u,d larvae in region r of age u [days] on simulation day d,

r region, r =

{
1 region 1: 300 m altitude,
2 region 2: 1500 m altitude,

u age of larvae, u = 1 . . . 20,
Ar,v,b,d adult anopheles in region r in infection status v,

b days after the last blood meal on simulation day d,

v infection status, v =

{ 1 not infected,
2 infected, but not infectious,
3 infectious,

b days since last blood meal, b = 0, . . . , 9,
Mi,r,a,s,z,d human beings with immunity status i in region r of age a

with health status s with z infections on day d,

i immunity status, i =

{
1 not immune,
2 immune,

r region, r =

{
1 300 m altitude,
2 1500 m altitude,
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a age, a =


1 0 6 age < 5 years,
2 5 6 age < 12 years,
3 12 6 age < 43 years,
4 43 6 age < 80 years,

s health status, s =

{ 1 not infected,
2 incubation period,
3 sickness,

z number of infections survived,
d day in year, d = 1 . . . 360,
S Mi,r,a,s,z,d number of bites suffered by human beings with immunity status i in region r

with age a, with health status s and z infections on day d,
S Ar,v,d number of bites by anopheles in region r and infection status v

on day d.

Anopheles lay eggs on the third, sixth and ninth day after their bloodmeal. Afterwards they need new blood. Therefore,
the number of new larvae is calculated as:

Lr,1,d = 100 ∗
3∑
v=1

{Ar,v,3,d +Ar,v,6,d +Ar,v,9,d} with daily ageing, i.e.,

Ar,v,b+1,d+1 = Ar,v,b,d for b = 1 . . . 8,

Ar,v,0,d+1 = Ar,v,0,d +Ar,v,9,d − S Ar,v,d,

Ar,v,1,d = S Ar,v,d.

The time which larvae need to mature depends on the temperature. If the temperature is below 15 ◦C larvae will die.
The maturation period was approximated as a negative-exponential equation.

Lr,u+1,d+1 =


Lr,u,d for temperatured,r > 20 and u = 1 . . . (R Lr − 1),
Lr,u+1,d for 15 6 temperatured,r(r) < 20 and u = 1 . . . (R Lr − 1),
0 15 > temperatured,r,

∆A birthr,1,0,d+1 = −∆L maturer,R Lr ,d+1 =
{
Lr,R Lr ,d for temperatured,r > 20,
0 else

with

R Lr maturation period of larvae in region r [days],

R Lr = max
{

6; round (134.9 ∗ e−0.095∗temperatured,r )
}

,

∆A birthr,v,b,d change of number of anopheles due to maturing larvae,
∆L maturer,u,d change of larvae due to maturation.

Larvae and anopheles die due to natural or artificial causes, such as larvicides, insecticides or drainage of pools. The
natural mortality of larvae and anopheles is given as:

∆L mortalr,u,d = −Lr,u,d ∗m lr,
m lr natural mortality rate of larvae in region r per day,
∆L mortalr,u,d change of larvae due to death,
∆A mortalr,v,b,d = −Ar,v,b,d ∗m ar,
m ar natural mortality of adult anopheles in region r per day,
∆A mortalr,v,b,d change of anopheles due to death.

The following equations allow the use of larvicides and insecticides:

∆L larr,u,d = −Lr,u,d ∗ t lr,
t lr share of pools treated with larvicides,
∆L larr,u,d change of larvae due to larvicides,
∆A indoorr,v,0,d = −Ar,v,0,d ∗ t ir,

t ir =

{
0.4 if Budget Indoorr

Popr,d
> 11.33 [US$/capita],

0.4 ∗ Budget Indoorr
11.33∗Popr,d

else,

∆A indoorr,v,b,d change of anopheles due to in-door-spraying,
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t ir share of mosquitos killed by in-door-spraying in region r,
Budget Indoorr budget for in-door-spraying in region r [US$],
Popr,d population in region r on day d, i.e.,

Popr,d =
2∑
i=1

4∑
a=1

3∑
s=1

20∑
z=0

Mi,r,a,s,z,d,

∆A outr,v,b,d = −Ar,v,b,d ∗ t or for b = 1 . . . 9,
∆A outr,v,b,d change of anopheles due to out-door-spraying,
t or share of the environment treated with out-door-spraying in region r.

The drainage shall have the following consequences:

∆Pr,d = −(Pr,d − 20) ∗ t pr,
Pr,d = Pr,d + ∆Pr,
t pr reduction of pools by drainage,

∆L drainr,u,d = Lr,u,d −
Lr,u,d∑20
k=1 Lr,k,d

∗min

{
20∑
k=1

Lr,k,d; 500000 ∗ Pr

}
,

∆L drainr,u,d change of larvae due to drainage.

The number of bites suffered by human beings of a certain compartment depends on the risk of being bitten and the
number of mosquitoes, i.e.,

S Mi,r,a,s,z,d =
Vr,a ∗Mi,r,a,s,z,d

Pop unr
∗min

{
3∑
v=1

Ar,v,0,d; 30 ∗ Pop unr

}

with

Vr,a share of population in region r and age a not protected against mosquitos,
Pop unr unprotected population in region r, i.e.,

Pop unr =
2∑
k=1

4∑
j=1

3∑
l=1

20∑
w=0

Vr,j ∗Mk,r,j,l,w,d.

Accordingly, the number of bites by anopheles of a certain compartment is given as:

S Ar,v,d =
Ar,v,0,d∑3
k=1 Ar,k,0,d

∗min

{
3∑
k=1

Ar,k,0,d; 30 ∗ Pop unr

}
.

An anopheles is newly infected if she bites an infectious human being, i.e.,

∆A infr,2,1,d = −∆A infr,1,0,d = S Ar,1,d ∗
∑2
i=1

∑4
a=1

∑20
z=0 Vr,a ∗Mi,r,3,a,z,d

Pop unr
,

∆A infr,v,b,d change of anopheles due to infection.

If a non-infected anopheles bites a non-infectious human being merely the blood-status b is increased, i.e.,

∆A infr,1,1,d = −∆A infr,1,0,d = S Ar,1,d ∗
{

1−
∑2
i=1

∑4
a=1

∑20
z=0 Vr,a ∗Mi,r,3,a,z,d

Pop unr

}
.

Multiple infections with booster-effects are not considered, i.e.,

∆A infr,v,1,d = −∆A infr,v,0,d = S Ar,v,d for v = 2, 3.

After the infection the plasmodium matures in the anopheles. This period depends on the temperature, i.e.,

Incubat Ar =

{
max[5; 270 ∗ e−0.11∗temperatured,r ] for temperatured,r > 16,
∞ else,

∆A incur,3,b,d = −∆A incur,2,b,d =
Ar,2,b,d

Inkubat Ar
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with

Incubat Ar incubation period in anopheles [days],
∆A incur,v,b,d change of anopheles due to incubation.

Finally, every day the number of larvae and anopheles has to adjusted, i.e.,

Ar,v,b,d+1 =Ar,v,b,d + ∆A birthr,v,b,d + ∆A mortalr,v,b,d + ∆A indoorr,v,b,d

+ ∆A outr,v,b,d + ∆A infr,v,b,d + ∆A incur,v,b,d,

Lr,u,d+1 =Lr,u,d + ∆L maturer,u,d + ∆L mortalr,u,d + ∆L larr,u,d + ∆L drainr,u,d.

Human beings

The model assumes a natural crude birth rate of 5%.

∆M birth1,r,1,1,0,d = 0.05
360 ∗

2∑
i=1

4∑
a=1

3∑
s=1

20∑
z=0

Mi,r,a,s,z,d,

∆M birthi,r,a,s,z,d change of M due to birth.

The population is structured in four age sets:

• a = 1 0 6 age < 5 years,

• a = 2 5 6 age < 12 years,

• a = 3 12 6 age < 43 years,

• a = 4 age > 43 years.

Every day a share is taken from class a and transferred to class a+ 1. In order to account for exponential growth, the
following formula is applied:

−∆M agei,r,a,s,z,d = +∆M agei,r,a+1,s,z,d = Mi,r,a,s,z,d ∗ ma
1−(1−ma)na+1 ∗ (1−ma)na

with

∆M agei,r,a,s,z,d change of M due to ageing,
ma mortality in age a,
na time interval of age set a [days].

The natural mortality is considered as follows:

Mor Ni,r,1,s,z,d = 1
22500 ∗Mi,r,1,s,z,d,

Mor Ni,r,2,s,z,d = 1
84000 ∗Mi,r,2,s,z,d,

Mor Ni,r,3,s,z,d = 1
56575 ∗Mi,r,3,s,z,d,

Mor Ni,r,4,s,z,d = 1
13320 ∗Mi,r,4,s,z,d,

∆Mi,r,a,s,z,d = −Mor Ni,r,a,s,z,d

with

Mor Ni,r,4,s,z,d natural mortality.

Every day a certain share migrates to the other region.

∆M mig1i,2,a,s,z,d = −∆M mig1i,1,a,s,z,d =
mig1,2

360 ∗Mi,1,a,s,z,d,

∆M mig1i,1,a,s,z,d = −∆M mig1i,2,a,s,z,d =
mig2,1

360 ∗Mi,2,a,s,z,d for every day,

∆M mig1i,r,a,s,z,d change of M due to normal migration,
migk,l share of population migrating regularly from region k to region 1.

However, strong (government-induced) moves are possible as well (once per year):

∆M mig2i,2,a,s,z,d = −∆M mig2i,1,a,s,z,d = mig spec1,2 ∗Mi,1,a,s,z,d,

∆M mig2i,1,a,s,z,d = −∆M mig2i,2,a,s,z,d = mig spec2,1 ∗Mi,2,a,s,z,d,

mig speck.l special (unique) migration from region k to region 1,
∆M mig2i,r,a,s,z,d change of M due to special migration.
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The incubation period of plasmodium in the human body is a constant, i.e., every day a certain number of infected human
beings develop malaria.

∆M inci,r,a,3,z,d = −∆M inci,r,a,2,z,d = Mi,r,a,2,z,d ∗
1

Inku M
,

∆M inci,r,a,s,z,d change of M due to incubation.

Malaria-related mortality is expressed as:

M Mi,r,a,d = −∆M mali,r,a,3,z,d =
WS m mi,a,h

d mi,h
∗Mi,r,a,3,z,d,

Gi,r,a,s,z,d = (1−WS m mr,a,h) ∗ Mi,r,a,3,z,d

d mi,h

with

M Mi,r,a,d malaria deaths on day d,
∆M mali,r,a,3,z,d change of M due to malaria related death,
Gi,r,a,s,z,d recoverers on day d,
WS m mi,a,h probability to die from malaria, immune status i, age a, treatment h,
d mi,h sickness periode [days].

The number of new infected human beings is calculated as:

Fi,r,a,z,d = ∆M infi,r,a,2,z,d = −∆M infi,r,a,1,z,d

=
Ar,3,0,d∑3
v=1 Ar,v,0,d

∗min{Mi,r,a,1,z,d; S Mi,r,a,1,z,d} ∗
{

1− (1− qi,a,z)
S Mi,r,a,1,z,d
Mi,r,a,1,z,d

}
with

Fi,r,a,z,d new infections,
qi,a,z medical infectiosity of human beings with immunity status i, age a and z infections,
∆M infi,r,a,s,z,d change of M due to infections.

After several infections semi-immunity can be achieved which reduces the medical infectiosity and the mortality risk.
Therefore, the number of infections is counted when a human being recovers:

∆M hea1,r,a,1,z+1,d = −∆M hea1,r,a,3,z,d = G1,r,a,z,d for z = 0 . . . 19; a = 1, 2, 3, 4,

∆M hea2,r,a,1,20,d = −∆M hea1,r,a,3,20 = G1,r,a,20,d for a = 2, 3, 4,

∆M hea1,r,1,1,20,d = −∆M hea1,r,1,3,20,d = G1,r,1,20,d,

∆M hea2,r,a,1,20,d = −∆M hea2,r,a,3,20,d = G2,r,a,20,d,

∆M heai,r,a,s,z,d change of M due to recovery.

However, semi-immunity is lost if no re-infections occur at least every six months. Therefore, the probability to be bitten
by at least one infectious mosquito is calculated and used to determine the number of people loosing semi-immunity on
day d:

∆M im1,r,a,1,20,d = −∆M im2,r,a,1,20,d = 1
180 ∗M2,r,a,1,20,d ∗

180∏
k=1

{1− f2,r,a,20,(d−k)},

∆M imi,r,a,s,z,d change of M due to immunity change

with

fi,r,a,z,d = 1−
[ ∑2

l=1 Ar,l,0,d∑3
k=1 Ar,k,0,d

]S Mi,r,a,1,z,d
Mi,r,a,1,z,d

.

Those who were not yet semi-immune fall behind in their struggle to obtain semi-immunity, i.e.,

∆M im1,r,a,s,z−1,d = −∆M im1,r,a,s,z,d = 1
180 ∗M1,r,a,s,z,d ∗

180∏
k=1

{1− f1,r,a,s,z,(d−k)}

for z = 1 . . . 20.
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Finally, all changes are reflected in M :

Mi,r,a,s,z,d+1 =Mi,r,a,s,z,d + ∆M birthi,r,a,s,z,d + ∆M agei,r,a,s,z,d + ∆M mig1i,r,a,s,z,d

+ ∆M mig2i,r,a,s,z,d + ∆M inf2i,r,a,s,z,d + ∆M mali,r,a,s,z,d + ∆M heai,r,a,s,z,d.
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