On Recent Research Developments at NC State University Relevant to the MSU NSF Biocomplexity Project

'An Integrated Analysis of Regional Land-Climate Interactions' 9/19-21/03

Fredrick H. M. Semazzi North Carolina State University Department of Marine, Earth and Atmospheric Sciences & Department of Mathematics

More Details

http://climlab4.meas. ncsu.edu

Climate Modeling Laboratory NC State University

Demonstration of ENSO

- Dominant air/sea process of the tropical oceans
- Creates a shift in the Walker Circulation with an associated shift in Indian Ocean SST
- Greater Horn of Africa generally becomes wetter during a warm ENSO event

 Novealleandmanescelaineeledu/~webster/mw/paper/naturepaper.html) events are associated with ENSO.

Global Warming Trend

Customization of RCMs for Downscaling

MODEL NUMERICAL DOMAIN

Outer domian

Eastern Africa Homogeneous Climatic Zones (Matayo & Semazzi, 1999)

Optimization of Regional Numerical Models

PERFORMANCE IN SIMULATING INTERA-SEASONAL VARIABILITY (RegCM2-NCSU Version – Semazzi et al, 1999)

Observations

NCSU-RegCM2 Model

Importance of large lakes over Eastern Africa

Orography & Large Lakes

PERFORMANCE IN SIMULATING VARIABILITY AT WATERSHED SCALES – Semazzi et al (2002) - Coupled POM-RegCM2 model for Lake Victoria Basin-

MEAN DIURNAL VARIATIONS OF LAKE VICTORIA SURFACE WATER FOR DECEMBER 1988

	Table-1						
Lake	Area (sq. Km)	Volume (cu. Km)	Maximum depth (m)				
Victoria	69,463 (2nd)	2,700 (8th)	92 (not among top)				
Malawi	28,878 (10th)	7,725 (5th)	706 (4 t h)				
Tanganyika	31,986 (7th)	18,900 (3rd)	1,464 (2nd)				
Michigan	57,800 (6th)	4,910 (6th)	180 (not among top)				

Table-3						
	RegCM2-POM	POM	RegCM2-1D	Observed		
Mean LST	24.4 °C	22.4 °C	23.3°C	25.2°C		
Difference (model-observed)	-0.8 °C	-2.8 °C	-1.9 °C	0		
Difference (%)	-3.17%	-11.11%	-7.54%	0		
			•			

Table-2						
	RegCM2-POM	RegCM2/1-D	Observed			
	Coastal (C)	Coastal (C)	Coastal(C)			
	entire lake basin (EB)	entire lake basin (EB)	entire lake basin (EB)			
Actual (mm)	143.5 (C)	157.75 (C)	130 (C)			
	140.0 (EB)	146.7 (EB)	135 (EB)			
Difference (mm)	13.5 (C)	27.75 (C)	0 (C)			
(simulation-observed)	5.1 (EB)	11.7 (EB)	0 (C)			
Difference (%)	10.38% (C)	21.35% (C)	0 % (C)			
	3.77% (EB)	8.67% (EB)	0 % (EB)			

Ensemble Model Prediction Research

Advantages of Ensemble Climate Model Projections (Palmer et al, 1999)

Dominant Modes of Climate Variability Over Eastern Africa

Global Warming Trend

- Rain Gauge Data comes from 144 stations (1961-90)
- CMAP has a 2.5° Resolution (1979-2001)
- Averaged for OND

East African Rainfall EOF % Variance

Global Rainfall EOF % Variance

Rainfall Project: Period 2071 to 2100 relative to the period 1961 to 1990

(SRES scenario B2)

Enhanced[•] El-Nino Climate activity

Similar to current changes

Conclusions

- ENSO and the Indian Ocean dipole have the strongest influence on rainfall in the East Africa
- Both have the similar effect on the region, so they are indistinguishable in our analysis
- The next strongest influence comes from Global Warming
- GCM reasonably reproduce both ENSO and Global warming modes over Eastern Africa.
- We should expect the regional climate models to improve over the regional simulations produced by GCMs
- Ensemble Model Prediction produces superior results